In this issue...

2 - 3 Duration of antibiotic therapy in Gram-negative infections: is shorter better?
Fatima Allaw, Sara F. Haddad and Souha S. Kanj

4 - 5 Monkeypox: what do we know about treatment and vaccination?
Helen Callaby

6 - 7 Artificial intelligence in infectious diseases: is it real?
Sarah B. Nahhal, Sara F. Haddad and Souha S. Kanj

Antimicrobial Resistance / ISAC News

8 - 9 Antimicrobial Resistance in the News

10 - 11 ISAC Society News

12 About ISAC / APUA
Duration of antibiotic therapy in Gram-negative infections: is shorter better?

Fatima Allaw*, Sara F. Haddad* and Souha S. Kanj
Division of Infectious Diseases, American University of Beirut Medical Center, Beirut, Lebanon
*Contributed equally

Antimicrobial resistance (AMR) is a major global threat that has recently captured the attention of physicians all over the world. Limiting antibiotic exposure is of utmost importance in the fight against AMR as it has been well established that prolonging duration of antibiotics increases the incidence of multidrug resistant pathogens. Moreover, using unnecessarily prolonged antibiotic courses exposes the patient to the risks of antibiotic-related adverse effects, including Clostridioides difficile infection, and increases hospital length of stay (LOS) and health costs. However, shortening antibiotic therapy in certain settings may be associated with a higher risk of treatment failure and relapse.

Hence, determining the right duration for antibiotic therapy (DOT) remains a challenging question notably for Gram-negative bacilli (GNB) and multidrug-resistant Gram-negative bacteria (MDR-GNB) that account for a vast proportion of hospital-acquired or ventilation-associated pneumonias (HAP/VAP), intra-abdominal infections (IAI), bloodstream infections (BSI) and urinary tract infections (UTI). These pathogens are of particular concern as they have been associated with high morbidity and mortality and are often seen in patients with comorbidities or in immunocompromised hosts (ICH). With the recent emergence of MDR-GNB, many novel antibiotics including cefiderocol, ceftazidime-avibactam, ceftolozane-tazobactam, imipenem-cilastin-relebactam and meropenem-varbobactam have been a welcome addition to the armamentarium in the treatment of various hospital acquired infections. However, the recently published trials did not draw firm recommendations about the optimal DOT. Moreover, published studies addressing the DOT for GNB in various infection sites mostly included Enterobacterales, with underrepresentation of non-fermenting organisms and MDR-GNB.

Starting with HAP/VAP, while the duration of 7 days of antibiotic therapy has been established and recommended by the Infectious Diseases Society of America / American Thoracic Society (IDSA / ATS) and the European Societies, ongoing studies such as the DATE trial are investigating shortening the regimen treatment of VAP to 4 days. However, one should be careful generalising the evidence to non-fermenting (NF) GNB. First, organisms like Acinetobacter spp., and Stenotrophomonas spp. are not commonly represented in the trials. Second, the optimal DOT of P. aeruginosa pneumonia is yet uncertain and prolonged duration might be needed particularly in patients with secondary bacteremia, MDR strains and slow response to therapy. The diDIAPASON study is a randomised control trial (RCT) published this year and showed no difference in mortality between 8 and 15-day antibiotic for P. aeruginosa VAP. However, patients who received a shorter course were twice as likely to have P. aeruginosa VAP recurrence.

As for IAI, it is well established that the cornerstone of effective treatment is adequate source control (ASC). However, shortening the DOT should be done carefully and with close patient monitoring, as studies have shown conflicting results and included different patient populations with variable outcomes; while some showed no significant difference in intensive care unit (ICU) stay, LOS and mortality rate between patients who received short (< 7 days) and long (> 7 days) antibiotics after ASC, the recent CABI RCT showed that 23.5% of patients who received less than 10 days of antibiotics had a relapse of IAI. A current multicenter study being conducted in the UK, the EXTEND trial, is aiming at comparing 28 days of antibiotics to the standard duration in patients in intensive care units (ICU) with IAI up to 180 days of follow-up. Thus, more robust data is needed to make standardised clinical guidance on DOT for IAI.

When it comes to BSI including MDR-GNB, there is no need to prolong DOT beyond 7 days based on the most recent guidance. Recent studies including patients with extended spectrum beta lactamase (ESBL) producing E. coli showed no difference between short and long duration of treatment of uncomplicated GN-BSI in mortality and recurrence of bacteremia. This also applies to catheter-
related GNB BSI where DOT can be shortened to 7 days if the central line is removed. As for patients with febrile neutropenia and BSI, uncertainty remains about the optimal DOT as one should take into consideration the patient’s degree of immunosuppression and severity of infection. In a recently published study, there was a successful attempt in decreasing antibiotic treatment to 7 days without increasing the risk of infection complications in patients with febrile neutropenia after implementing the 4th European Conference on Infections in Leukemia (ECIL-4) recommendations. Nonetheless, it is difficult to generalise the current findings to some pathogens such as *P. aeruginosa*. Studies showing that a short DOT is as effective as long DOT in the treatment of *P. aeruginosa* BSI excluded patients with persistent bacteremia and those with metastatic infectious foci. In fact, *P. aeruginosa* BSI tends to occur in immunocompromised or ICU patients or those with co-morbidities and treatment duration should vary according to the primary source of bacteremia, host factors and susceptibility of the isolate. As for BSI caused by other MDR-GNB, there are no published studies to guide on the optimal DOT in various infection sites.

Finally, although the guidelines for the DOT in pyelonephritis still recommend a variable duration according to the choice of drug and the presence of an abscess, there is a tendency towards shortening the treatment in patients with UTI and secondary bacteremia to 7 days including those caused ESBL-producing Enterobacteriaceae. This strategy might also apply to afebrile UTI in men when treated with trimethoprim / sulfamethoxazole or ciprofloxacin as both drugs are highly excreted in the urine. However, one should be careful when treating a complicated acute prostatitis as studies have shown that a shorter course was associated with earlier relapse and therefore a 14-day course is still recommended.

It is also important to highlight that the evidence on the optimal DOT for GNB infections in ICH is scarce, and this population is of particular interest as their inadequate innate and adaptive immune systems may alter the infection course and its outcome. Prolonged antibiotic duration might be needed to achieve an effective cure; however, it is a double-edged sword as it might predispose the ICH to future colonisation and infections with resistant pathogens. Meanwhile, a patient centered approach should be the cornerstone for deciding on DOT for GNB infections in ICH.

While recent studies have supported shorter antibiotic regimens in some scenarios, further studies are still needed to draw definitive conclusions in various sites of infection and when dealing with different GN pathogens and host factors. The new paradigm is to treat infections only for as long as it is necessary taking into consideration the patient’s host factors, the pathogen’s resistance profile, the rapidity of response to therapy, the site of infection and adequacy of source control.

References

Monkeypox: what do we know about treatment and vaccination?
Helen Callaby
Aberdeen Royal Infirmary, NHS Grampian, Aberdeen, UK

Monkeypox is a viral infection, caused by the DNA virus monkeypox, part of the orthopox genus, in the family poxviridae. Although it is named “monkeypox” after first being identified in research monkeys, the original host is not known but is likely to be smaller rodents. Human monkeypox was first noted in the Democratic Republic of Congo in 1970. Typical symptoms include vesicles or ulceration and may include systemic symptoms such as fever, lymphadenopathy and myalgia. Monkeypox virus (MPXV) is spread by close contact with lesions of those infected and is spread via face-to-face, skin-to-skin, mouth-to-mouth or mouth-to-skin contact. The incubation period is typically 5-21 days. Monkeypox is confined to Western and Central Africa, whereby two distinct clades have been identified, Clade I (formerly Congo Basin) and Clade II (West African). Imported cases of monkeypox have been reported sporadically in various countries, but sustained community transmission in countries that are not usually endemic have not been reported prior to May 2022.

In May 2022, an increasing number of countries in Europe and the Americas reported cases of Monkeypox. Between 1 January 2022 and October 21 2022 a total of 75,441 laboratory confirmed cases have been reported to WHO. The virus has mostly been identified amongst men who identify as Gay, Bisexual and Men who have Sex with Men (GBMSM), but this not always the case. Monkeypox, in the context of this outbreak, is described as mild with most people recovering without treatment, although in those who are immunocompromised monkeypox virus can be more severe. Diagnosis is made by Polymerase Chain Reaction (PCR), which can be done on lesion swabs, throat swabs, or blood. Treatment options are not yet well established and options will be discussed.

In terms of prevention, Modified Vaccinia Ankara (MVA) can be used to prevent more serious complications. MVA is live attenuated vaccine, which contains modified vaccinia Ankara, a vaccinia virus closely related to smallpox. Vaccinia Ankara does not cause disease in humans as it is unable to replicate. Similar antibodies are produced which are protective against MPXV. MVA is given intra-muscularly and most efficacious in the first four days following exposure, although some efficacy has been demonstrated up to 14 days following administration. In a 2013 randomised control trial of over 4,000 participants, found no significant safety concerns and described a good tolerability profile. Previous replication competent smallpox vaccines, such as DryVax, were associated with cardiac complications such as myocarditis and pericarditis, but this is not the case with MVA as adverse events in relation to the cardiovascular system were similar between the vaccinated group and placebo group. Efficacy data for MVA against MPXV in humans is currently scarce. It is known that the virus is efficacious against smallpox and this knowledge is used to infer efficacy against monkeypox virus, alongside primate studies.

MVA is recommended for healthcare workers who may come in to contact with MPXV, laboratory workers who are likely to handle MPXV and those who have had close contact exposure to a case of confirmed MPXV. In the UK, the Joint Committee on Vaccination and Immunisation (JCVI) has also now recommended that GBMSM who are at highest risk are vaccinated with MVA.

At the start of the 2022 outbreak, there was no licensed treatment for MPXV in the UK. Treatment is based on knowledge of smallpox. Tecovirimat has been used in the UK for inpatients with the severe disease. Tecovirimat, an anti-viral which inhibits p37, a protein present in orthopox viruses, has been used in the treatment of smallpox in animals and has a reasonable safety profile in humans. In animal studies, Tecovirimat showed good efficacy, and the best outcome was when given in combination with post exposure prophylaxis MVA.

Cidofivir, an acyclic nucleoside analogue, is used for DNA virus infections, primarily CMV retinitis. It has known to have in vitro activity against orthopox viruses and in vivo activity against pox viruses in animal studies. Cidofivir is used in humans, but there is caution over its safety profile given nephrotoxicity concerns. Brincidofovir is a lipid analogue of Cidofivir. There is no human data available but it has been shown to be efficacious against MPXV in vitro. In case reports, Brincidofovir has been shown to cause liver derangement and did not lead to any clinical benefit.

“Imported cases of monkeypox have been reported sporadically in various countries, but sustained community transmission in countries that are not usually endemic have not been reported prior to May 2022.”

Callaby • ISAC / APUA Newsletter Vol 40. No 2 • © ISAC / APUA 2022
Vaccinia Immune Globulin Intravenous (VIGIV) may be a treatment option, but efficacy is not known and access may be limited.

In summary, the 2022 monkeypox outbreak has risen rapidly and unexpectedly. It was reported in early 2022 that monkeypox may become a threat given the cessation of the smallpox vaccination, but it could not be predicted or expected that an outbreak of this scale would arise. With vaccinations being rolled out on a large scale, cohort data will become available in due course on MPXV protectivity of MVA. Similarly, observational data and planned clinical trials will provide further insight to MPXV treatment options.

References
8. United Kingdom Health Security Agency. UKHSA. Accessed 20 July 2022
10. Berhanu A et al. Treatment with the smallpox antiviral tecovirimat (ST-246) alone or in combination with ACAM2000 vaccination is effective as a postsymptomatic therapy for monkeypox virus infection. Antimicrob Agents Chemother. 2015 59:4296-300
12. Treatment Information for Healthcare Professionals. CDC. Accessed 21 July 2022
With the unprecedented tsunami of novel digital technologies and devices, artificial intelligence (AI) has changed the modern world, and medicine is no exception. AI is being extensively used in various clinical settings to improve patient care and hospital operations, and in 2016, the largest investments in AI research were made in its application in healthcare. Learning algorithms can collect increasing amounts of diverse data to generate a more accurate diagnosis. AI is a novel technical profession that imitates human intelligence by utilising computer technology and providing new concepts and solutions for complex problems.

There are two subtypes of AI in medicine: physical and virtual. The physical part consists of the application of AI in robots capable of performing surgeries and various medical procedures. Whereas the virtual aspect is represented by machine learning, which is used in medical applications such as electronic health records (EHR). In machine learning (ML) algorithms programmed by engineers use medical data to learn and clarify unexplained events.

The application of AI in the medical field is certainly growing, and AI is being employed nowadays for the improvement of diagnosis, thus helping healthcare workers by decreasing the workload and shortening the time required for diagnosis (Figure). AI is applied in various medical domains including radiology, ophthalmology, pathology, dermatology and gastroenterology. For example, in the radiology field, computer assisted diagnosis helped in early detection of COVID-19 infection and in the classification of lung nodules as malignant or benign. And in ophthalmology, machines with AI algorithms are used for the diagnosis and screening of retinal diseases.

When it comes to infectious diseases (ID), multiple applications of AI were studied, including infection control, disease diagnosis and microbiology. Regarding infection control, a few established health-care associated infection (HAI) surveillance programmes are used to analyse information from multiple data sources and observe patterns to identify clusters and predict the upcoming trends. The transmission of an infection can be simulated by analysing the chain of contacts using AI algorithms. For example, an AI algorithm was used to predict outbreaks of methicillin-resistant Staphylococcus aureus (MRSA) and influenza in different hospital departments and helped in early initiation of the needed interventions. Also, ML applications were used to estimate the risk of hospital acquired Clostridium difficile infection. Regarding infectious diseases diagnosis, AI was applied in the identification of Mycobacterium tuberculosis (MTB) infections on chest images by image analysis computer aided diagnosis. The latter was notably beneficial in areas with high MTB prevalence and shortage in radiology specialists. Also, ML image analysis helps in the diagnosis of malaria through reading of thick and thin blood smears and in the diagnosis of bacterial vaginosis after training the machine on smears that are classified by Nugent rules. In addition, at Johns Hopkins hospital AI algorithms were used to make a classification tree based on specific provided variables to identify the patients at risk of extended spectrum beta lactamase (ESBL) producing organisms causing bacteremia. The positive predictive value of this tree was 90.8% and it was proved that it can be used in clinical settings and help start the appropriate empirical antibiotic therapy. Furthermore, there are multiple applications of AI in microbiology through image analysis and convolutional neural network (CNN). Millions of images are used to train the machine to identify bacterial Gram stain in positive blood cultures, and to identify parasites in fecal samples. The same mechanism of ML is used to analyse the growth of microbes on agar plates, thus decreasing the number of negative plates that need to be reviewed by the microbiology technician. AI is used in the antimicrobial resistance (AMR) field as well. Multiple developed algorithms are applied to predict the presence of AMR genes in bacteria such as in Staphylococcus aureus, MTB, and Pseudomonas aeruginosa.
studied how the SARS-COV-2 virus infected hosts and used AI algorithms to search for approved medications that can counter the viral infection mechanism and cytokine storm, and this has led to the identification of Baricitinib as a treatment option for COVID-19 infection.17.

The future of ID relies on novel diagnostic tools18. This evolution is possible through the combination of AI and ML with various information (such as patients’ vital signs, laboratory results, inflammatory markers and medical notes) to produce excellent clinically useful results and impact outcomes. More research is being done to identify potential uses of AI in ID such as helping in bacterial identification14, and in the discovery of new antimicrobials17. Health care personnel must be trained on the uses and applications of AI in medicine, as it will be an essential component of healthcare in the future.1

References:
WHO releases first-ever list of health-threatening fungi

The World Health Organization (WHO) has published a report highlighting the first-ever list of fungal “priority pathogens” - a catalogue of 19 fungi that represent the greatest threat to public health. The WHO Fungal Priority Pathogens List (FPPL) aims to focus and drive further research and policy interventions to strengthen the global response to fungal infections and antifungal resistance.

The WHO FPPL list is divided into three categories: critical, high and medium priority. The fungal pathogens in each priority category are ranked according to their public health impact and/or emerging antifungal resistance risk. The report sets out strategies for policymakers, public health professionals and other stakeholders to improve the overall response to these priority fungal pathogens including preventing the development of antimicrobial resistance.

Quadripartite release One Health plan of action

A new One Health Joint Plan of Action has been launched by the Quadripartite – the Food and Agriculture Organization of the United Nations (FAO), the United Nations Environment Programme (UNEP), the World Health Organization (WHO) and the World Organisation for Animal Health (WOAH). This initiative seeks to improve the health of humans, animals, plants and the environment at global, regional and country levels.

The five-year plan (2022-2026) is a response to international requests to prevent future pandemics and to promote health sustainably through the One Health approach. The report is built around six action tracks: One Health capacities for health systems; emerging and re-emerging zoonotic epidemics; endemic zoonotic, neglected tropical and vector-borne diseases; food safety risks; antimicrobial resistance; and the environment. Each action track consists of specific activities, deliverables and a timeline. The report aims to build on and complement existing global and regional One Health initiatives.

Keys to successfully reducing antibiotics in food animals

A new report from the Food and Agricultural Organisation of the United Nations and the Veterinary Medicines Directorate outlines the multisectoral, collaborative, voluntary approach to antibiotic stewardship in agriculture taken by the UK and Northern Ireland.

The UK has seen antibiotic sales for food-producing animals halve since 2014 (which was when the UK commissioned an independent review on antimicrobial resistance (AMR) chaired by Lord O’Neill). Over the same period, the use of highest-priority critically important antibiotics (HP-CIsAs) has reduced by almost 80%. The UK’s reduction in antibiotic consumption in agriculture makes it one of the lowest users of antibiotics across Europe and the lowest of those countries with a significant livestock farming industry.

The report highlights the UK’s keys to success which includes development of strong relationships between producers, veterinarians and government, industry-led target-setting and cross-sectoral learning and sharing of experiences.

AMR burden in Europe comparable to global estimates

Authors of a new report in *The Lancet Public Health* estimated 541,000 deaths were associated with bacterial antimicrobial resistance (AMR) and 133,000 deaths were attributable to bacterial AMR across the 53 countries in the WHO European region in 2019.

Bloodstream infections accounted for the largest burden of AMR deaths (195,000) followed by intra-abdominal infections (127,000) and respiratory infections (120,000). Seven pathogens were responsible for approximately 457,000 deaths associated with resistance with *Escherichia coli* and Methicillin-resistant *Staphylococcus aureus* presenting the largest burden.

The highest mortality rates per 100,000 people were seen in eastern Europe (19-9 attributable to AMR and 74-0 associated with AMR) followed by central Europe (16-6 attributable and 68-0 associated). In comparison, western Europe had 11-7 deaths attributable to and 52-5 deaths associated with AMR.

In comparison with recently published global estimates, the AMR burden in this region (approximately 12% of the world’s population) makes up 10-5% of the total estimated 1-27 million global deaths attributable to and 10-9% of the 4-95 million global deaths associated with AMR.

Knowledge gaps in antibiotic use in refugees and migrants

The fourth report from the WHO in the Global Evidence Review on Health and Migration (GEHM) series captures evidence related to antibiotic access and use in migrant and refugee populations.

It finds that the available evidence on refugees’ and migrants’ access to and use of antibiotics is scarce and is largely constrained to high-income contexts. For example, published evidence on access to antibiotics, comparisons with host populations, and quality of available antibiotics is almost non-existent for refugee camp settings in low and middle-income countries. However, it is clear that refugees and migrants face significant barriers to access and appropriate use of antibiotics along the care continuum for various reasons (including legal and financial barriers, resorting to use of informal networks to obtain antibiotics etc). The authors conclude that as international refugee and migrant populations may be particularly vulnerable to rising AMR, additional efforts are needed at a national level to align action plans on AMR with those on migrant and refugee health and access to health care more broadly.

New antibiotic combination effective against UTIs

A study in *JAMA* showed a combination of cefepime/enmetazobactam was more effective in treating complicated urinary tract infections (UTI) and acute pyelonephritis than a standard treatment of piperacillin/tazobactam.

The randomised trial included 1,034 patients across 90 sites in Europe, North and Central America, South America and South Africa.

79.1% of patients receiving cefepime/enmetazobactam were successfully treated compared with 58.9% receiving piperacillin/tazobactam. Of the 21% who had extended-spectrum β-lactamase infections, 73% who received cefepime/enmetazobactam were successfully treated compared with 51% on the standard therapy.
Incomplete AMR data in Africa

New data on antimicrobial resistance (AMR) collected and analysed by the Mapping Antimicrobial Resistance and Antimicrobial Use Partnership (MAAP) (headed by African Society for Laboratory Medicine) from sub-Saharan countries found only 5/15 antibiotic-resistant pathogens designated by the World Health Organization (WHO) as priority pathogens are being consistently tested. All five demonstrated high resistance.

MAAP reviewed 819,584 AMR records from 2016 to 2019 from 205 laboratories across 14 countries. MAAP also reviewed data from 327 hospital and community pharmacies and 16 national-level antimicrobial consumption (AMC) datasets.

Only 1.3% of the 50,000 medical laboratories forming the laboratory networks of the participating countries conduct bacteriology testing. Researchers also found that in 8/14 countries, more than 50% of the population is out of reach of any bacteriology laboratory.

The research also found that only four drugs comprised more than two-thirds of all the antibiotics used in healthcare settings. Stronger medicines to treat more resistant infections (e.g. severe pneumonia, sepsis and complicated intra-abdominal infections) were not available, suggesting limited access to some groups of antibiotics.

MAAP is calling for a drastic increase in the quality and quantity of AMR and AMC data being collected across the continent along with revised AMR control strategies and research priorities.

New advice on AMS in hospitals for future pandemics

A statement from the Society for Healthcare Epidemiology of America (SHEA) offers healthcare providers (HCPs) guidance on preventing inappropriate antibiotic use in public health emergencies based on lessons learned during the COVID-19 pandemic. The pandemic exacerbated antibiotic resistance by increasing inappropriate antibiotic prescribing, particularly at the start of the pandemic. But this continued even after it became clear that coinfection with bacteria is uncommon with COVID-19, clinical indicators used to differentiate viral from bacterial infection were no longer valid and the harm of overuse became evident.

The statement urges facilities and HCPs to utilise antimicrobial stewardship programmes (ASPs) to counter inappropriate antibiotic prescribing. During a pandemic, ASPs can lead multidisciplinary teams to compile up-to-date evidence and disseminate care protocols; monitor prescribing and lab assay ordering to detect and mitigate over or improper use; and partner with infection prevention and control and incident command partners to integrate and support response efforts.

Pharmacists to prescribe antibiotics in England

From 2023, pharmacists in England will be able to prescribe antibiotics without involving a GP as part of a pilot scheme funded by NHS England.

The pilot scheme will allow prescribing pharmacists to treat a wider range of conditions including hypertension, high cholesterol, and minor illnesses. It is hoped the scheme will reduce the need for GP appointments.

Scotland and Wales already run similar schemes. The Department of Health and Social Care said data from Scotland indicate that enabling pharmacists to prescribe antibiotics for urinary tract infections alone could save 400,000 GP appointments a year and a total of £8.4m.

High levels of antibiotic used to treat UTIs in wastewater

Researchers have discovered that the levels of ciprofloxacin (commonly used to treat respiratory, skin and urinary tract infections, amongst others) are likely to result in increased antibiotic resistance (AMR) in wastewater.

Authors of a study in Environment International investigated the risk of AMR selection in UK wastewater and receiving waters by determining where measured environmental concentration data (n = 8,187) for four antibiotics (ciprofloxacin, azithromycin, clarithromycin, and erythromycin) collected in England and Wales from 2015–2018 (sites n = 67) exceeded selective concentration thresholds derived from experiments undertaken previously.

The authors found selection for AMR by ciprofloxacin is likely to have occurred routinely in England and Wales wastewater during that period, with some seasonal and regional trends. Wastewater treatment reduces the selection risk posed by ciprofloxacin significantly, but not completely, and predicted risk in surface waters remains high in several cases. Conversely, the potential risks posed by the macrolides (azithromycin, clarithromycin, and erythromycin) were lower than those posed by ciprofloxacin.

Supermarkets failing to reduce antibiotics meat supplies

A new report by the US PIRG Education Fund and several members of the Antibiotics Off the Menu coalition has found the majority of the top US grocery stores are not acting to stop antibiotic use in their meat and poultry supply chains.

The authors examined company policies of 12 major supermarkets regarding permitted or prohibited antibiotic use in meat and poultry produced for their private label products (this is the area in which supermarkets can make the most direct change) as well as the level of progress towards full implementation of any such policies. Based on this, the supermarkets were then graded (A–F). Eight out of 12 of the largest US supermarkets (including Walmart and Aldi) received the lowest ranking of ‘F’. No supermarket received a rating higher than ‘C’.

The report demonstrates that the grocery sector has taken little action to protect the health of their customers, ensure the welfare of animals on supplying farms or promote more sustainable food systems. It also highlights that most grocery companies lack any meaningful policies requiring their meat and poultry suppliers to eliminate the overuse of antibiotics.

Rapid test distinguishes between bacterial/viral infections

Authors of a new study in JAMA Open Network found a rapid diagnostic test based on immune host response could help differentiate between bacterial and viral infections in acute respiratory infections (ARI). The authors investigated whether the FebriDx – a rapid, point-of-care immunoassay – can distinguish bacteria from viral infections by measuring myxovirus resistance protein (MxA) and C-reactive protein (CRP) in finger-prick blood samples.

The test correctly classified 68 / 73 bacterial infections demonstrating a sensitivity of 93.2%, a specificity of 88.4%, negative predictive value (NPV) of 98.7% and positive predictive value (PPV) of 58.1%. The test correctly classified 208 / 296 viral infections demonstrating a sensitivity of 70.3%, a specificity of 88.0%, NPV of 66.7% and PPV of 89.7%. In the 158 patients with confirmed negatives, the bacterial and viral test results were negative in 156. The test could help reduce unnecessary antibiotics for viral ARIs.
ISAC Academy

ISAC is pleased to announce the launch of its first e-module. “Respiratory Tract Infections: Vaccination as a tool for reducing AMR” This course explores the causes of Respiratory Tract Infections (RTIs), the epidemiological effect of the SARS CoV-2 pandemic on RTIs and antimicrobial prescribing. It also explores antimicrobial resistance and diagnostics before discussing the role of vaccines in reducing antimicrobial resistance. The course was developed by ISAC’s Immunisations and Vaccines Working Group, led by Dr David Macintosh and Dr Mario Ramirez. The course is free and participants will receive a certificate of completion on passing the course. View the course here or scan the QR code.

On demand webinars

ISAC has hosted numerous free, educational webinars as part of the ISAC Academy (www.ISAC-Academy.world) on a variety of infectious disease-related topics in collaboration with its Working Groups and Member Societies. All ISAC webinars can be watched on the ISAC YouTube Channel free of charge. Scan the QR code or click here to view the content.

ISAC Project Grants

In 2020, ISAC launched its Project Grant initiative to award up to £10,000 for antimicrobial resistance / infectious disease research involving low- to middle- income countries (LMICs). We are pleased to share the summary from Dr Eric Ngyedu (Cape Coast Teaching Hospital, Cape Coast, Ghana) and colleagues, one of the first projects to have been awarded as part of the initiative.

Assessing the prevalence and drivers of over-the-counter sales of antibiotics among community pharmacies and over-the-counter medicine sellers in Ghana to develop mitigatory behaviour change interventions to tackle AMR: a mixed-methods study

Evidence from Ghana indicates high levels of over-the-counter (OTC) non-prescription antibiotic dispensing among pharmacies and over-the-counter medicine sellers (OTCMS) in community settings despite the illegality of this practice thus contributing to bacterial antimicrobial resistance (AMR). Our study determined the prevalence of antibiotic dispensing, dispensers’ knowledge of AMR and identified enablers of this practice to develop interventions via the COM-B behaviour change model using mixed methods. Simulated client visits and questionnaires assessed actual versus reported practice and knowledge of AMR respectively. In-depth interviews identified underlying drivers of OTC dispensing in four Ghanaian metropoles included in the study (i.e. 11% of Ghana’s population).

High levels of willingness to dispense (88.3%, 234 / 265) were found across all simulated client visits with a significant difference seen among three demand levels for simulated viral upper respiratory tract infections ($p=0.0005$). Questionnaire responses revealed clients frequently requested antibiotics without a prescription and more than 80% of respondents at these outlets willing to dispense. Knowledge of AMR and its importance was highly variable among respondents. In-depth interview themes will be analysed to develop interventions aimed at curbing drivers of OTC dispensing among community drug outlets. This will ultimately enhance the proper use of antibiotics to mitigate AMR in Ghana.
Future congresses

33rd INTERNATIONAL CONGRESS OF ANTIMICROBIAL CHEMOTHERAPY
November 3-6, 2024 | Istanbul

APCCMI 2023
The 19th Asia Pacific Congress of Clinical Microbiology and Infection
July 6 (Thu) - 8 (Sat), 2023
COEX, Seoul, Korea

www.icc2024.org

www.apccmi2023.com
About ISAC
ISAC was founded as a non-profit organisation in 1961 and, in response to the dynamic nature of the subject matter, has focused most recently on antimicrobial stewardship and antimicrobial resistance.
ISAC is a federation of affiliated Member Societies which aims to increase the knowledge of antimicrobial chemotherapy and combat antibiotic resistance around the world.
ISAC currently has a worldwide membership of 95 national and regional societies, which in turn have over 60,000 individual members. Visit www.ISAC.world to see how your society can become an ISAC Member Society.
ISAC has 22 Working Groups on specialist subjects which are engaged in advancing scientific knowledge in antimicrobial chemotherapy, clinical microbiology and infectious diseases through various activities. To join an ISAC Working Group, please email Fee Johnstone, ISAC Executive Assistant (secretariat@ISAC.world) with a brief C.V.
ISAC has two society journals:
- International Journal of Antimicrobial Agents (IJAA) (impact factor: 15.441)
- Journal of Global Antimicrobial Resistance (JGAR) - gold open access (impact factor: 4.349)
ISAC’s scientific congress, International Congress of Antimicrobial Chemotherapy (ICC), is held every two years and it is now in its 32nd year.
For more information on ISAC, visit www.ISAC.world or scan the QR code.

About APUA
Founded in 1981 by Prof. Stuart B. Levy as a global non-profit organisation, APUA’s mission is to maximise the effectiveness of antimicrobial treatment by promoting appropriate antimicrobial use and containing drug resistance. It was the first organisation to address antibiotic preservation and continues to provide a strong voice in the field despite the subsequent emergence of many other organisations and groups addressing a topic which has become a specialty in its own right; that of “antibiotic stewardship”.
Prof. Levy’s retirement was announced towards the end of 2018. This was an opportunity for the APUA Board to review its leadership and governance and it took the opportunity to seek a partner organisation with which to synergise. This led to the merger of APUA with the International Society of Antimicrobial Chemotherapy (ISAC), effective from February 2019.
The new international APUA Board meets regularly and aims to build on the work achieved by Prof. Levy and his excellent team of associates.
Visit www.APUA.org for more information or scan the QR code.

Disclaimer
ISAC / APUA accept no legal responsibility for the content of any submitted articles, nor for the violation of any copyright laws by any person contributing to this newsletter. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by ISAC / APUA in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.
The opinions expressed within the content are solely those of the authors and do not reflect the opinions and beliefs of ISAC or APUA.
The APUA Newsletter (ISSN 1524-1424) © 2022 ISAC / APUA
Since 1983, the APUA Newsletter has been a continuous source of non-commercial information disseminated without charge to healthcare practitioners, researchers, and policy-makers worldwide. The Newsletter carries up-to-date scientific and clinical information on prudent antibiotic use, antibiotic access and effectiveness, and management of antibiotic resistance. The publication is distributed in more than in more than 100 countries. The material provided by ISAC / APUA is designed for educational purposes only and should not be used or taken as medical advice. We encourage distribution with appropriate attribution to ISAC / APUA. See previous editions of the Newsletter on the APUA website.
*ISAC welcomes contributions. Please send us your article ideas. All content may be edited for style and length. Please email secretariat@ISAC.world

Newsletter Editorial Team: Fiona MacKenzie (Managing Editor) and Fee Johnstone (Editorial Assistant)