In this issue...

2 - 3 **A new resistance combatting strategy**
 Robin Patel

4 - 5 **Antimicrobial treatment of *Pseudomonas aeruginosa* severe sepsis**
 Johnny Zakhour, Sima L. Sharara, Joya-Rita Hindy, Sara F. Haddad, Souha S. Kanj

6 **HAPPY PATIENT project: an update**
 Carl Llor, Lars Bjerrum, Pierre Tattevin

7 **The ISAC Early Career Working Group: providing support to the next generation of researchers**
 Jinxin Zhao, Yu-Wei Lin, Nusaibah Abdul Rahim, Iris Minichmayr

ISAC / APUA News

8 - 9 **Antimicrobial resistance in the news**

10 - 13 **ISAC / APUA news**

14 **About ISAC / APUA**

Find out more on P. 12
The global antimicrobial resistance (AMR) crisis is a major threat to human health. In a recently published article, the Antimicrobial Resistance Collaborators estimated that 4.95 million deaths were associated with bacterial AMR in 2019. These numbers are predicted to increase year by year. AMR has changed the way medicine is practiced. For example, infections previously treated with oral antibiotics now require injectable treatment and, because whether an antimicrobial resistant bacterium may be involved is often unknown when therapy is initiated, unnecessarily broad-spectrum antibiotics are oftentimes prescribed, or alternatively, the prescribed regimen may not even treat the infection because of unrecognised underlying resistance. In addition, antibiotics are frequently administered to patients who do not need them because they do not have a bacterial infection.

AMR involves hundreds of microbial species, dozens of antimicrobial agents and a multitude of clinical syndromes (e.g., pneumonia, urinary tract infection, intra-abdominal infection). The WHO’s Priority Pathogens List for new antibiotics and the United States Centers for Disease Control and Prevention’s “urgent”, “serious” and “concerning” threats provide listings, albeit slightly different, of resistant bacteria, but do not comprehensively list all possible species or resistance types involved. While development of new antibiotics and antimicrobial stewardship are essential to address this evolving situation, better diagnostics and appropriate use thereof are an additional strategy that needs to be better incorporated.

The classic three-step diagnostic paradigm used in clinical medicine (Figure 1), taught to medical students and applied by medical professionals throughout the world, involves asking whether a patient’s clinical presentation could be due to infection (step 1: based on history, physical examination, initial tests); what the causative pathogen(s) might be (step 2: based on culture, serologic testing, molecular testing for microorganisms); and finally, which treatment should be administered (step 3: based on culture-based antimicrobial susceptibility testing). This classic approach, although intellectually interesting, is at once contributing to the AMR crisis and failing because of it.

Creative use of technology can help; fortunately, we are in a technology revolution. There have been major advances in the application of proteomics, nucleic acid amplification tests and sequencing-based diagnostics, microbial imaging, microbial metabolomics and advanced host response assessment for infectious diseases in recent years, and point-of-care diagnostics are in the process of transforming where testing can be done (including at non-traditional sites and in the home). In my view, we need to rethink approaches to the challenge of AMR by practicing medicine in a more modern way using better diagnostics to inform antimicrobial therapy.

Modern diagnostic tests can help curb emergence of AMR by informing improved use of antibiotics (a patient and societal benefit), leading to avoidance of unneeded testing and treatment (a patient benefit), decreasing transmission of infectious diseases (a societal benefit) and informing new discoveries and better delivery of healthcare (which will have future benefits). A decade ago, the first large multiplex PCR panel was cleared / approved by the United States Food and Drug Administration (FDA) for testing positive blood culture bottles. Our team executed a randomised controlled clinical trial of this panel showing that its implementation would reduce unneeded use of antibiotics and more quickly get patients with drug-resistant infections on appropriate antibiotic therapy. In this study, results of multiplex panel testing were provided with interpretive comments with therapeutic guidance, an approach recently supported by a recommendation from the Diagnostics Committee of the Antibacterial Resistance Leadership Group. In the multiplex PCR panel study, the only Gram-negative resistance marker included in the panel was blaKPC, for which there were no detections; accordingly, effects on antibiotic use in Gram-negative bacteraemia were minimal. A second randomised controlled study evaluated rapid microbial imaging-based phenotypic susceptibility testing for patients with blood cultures positive for Gram-negative bacilli; in that study, time to first antibiotic modification was faster with the rapid test for all antibiotics and Gram-negative antibiotics, with antibiotic escalation being faster for antimicrobial-resistant infections.

Figure 1. Classic Diagnostic Paradigm
The blood culture diagnostics highlighted above (although performed after incubation of blood cultures) illustrate an important pathway forward – that is, detecting microorganisms and immediately defining their clinically relevant antibiotic susceptibility. This has been delivered by tests such as the GeneXpert (Cepheid) MRSA/SA SSTI assay (which detects Staphylococcus aureus and methicillin resistance / susceptibility) and MTB/RIF assay (which detects Mycobacterium tuberculosis and rifampin resistance /susceptibility). Our group recently described an assay for detection of Helicobacter pylori and associated clarithromycin resistance / susceptibility, and Mycoplasma pneumoniae and associated azithromycin resistance / susceptibility; assays to detect ciprofloxacin resistance / susceptibility in Neisseria gonorrhoeae and azithromycin resistance in Mycoplasma genitalium are other examples of this approach.

Beyond nucleic acid amplification-based microbial detection and gene- or mutation-based characterisation of resistance, microbial sequencing directly from clinical specimens is being developed, and can theoretically both detect the infecting organism(s) and characterise resistance / susceptibility to clinically relevant antibiotics. In a case report, for example, Mycoplasma salivarium was identified as a cause of periprosthetic joint infection, using shotgun metagenomic sequencing, with simultaneous detection of a mutation associated with macrolide resistance. The possibility of going from microbial sequence data to near-full recapitulation of results of phenotypic susceptibility may be realised in the future, especially with improved understanding of resistance mechanisms and advanced analytics. This may in turn facilitate rapid full recapitulation of phenotypic susceptibility testing in a clinically actionable way, directly from clinical specimens. In addition, deep sequencing may allow simultaneous assessment of microorganisms and host response, helping with interpretation of clinical significance of detected microorganisms.

Finally, in addition to transforming clinical practice and optimising use of antibiotics, improved diagnostics may deliver new findings, as illustrated by the surprising discoveries of Borrelia mayonii, Yersinia rochesterensis, and the cause of hyperammonemia syndrome in lung transplant recipients – Ureaplasma urealyticum and Ureaplasma parvum. In summary, because of improved diagnostic testing, we are positioned to undo the classic (and slow) diagnostic paradigm (Figure 1), using diagnostics that detect microorganisms and directly call out ideal therapy in a single step (Figure 2), so-called, “theranostics”. To move forward, we need continued development of better diagnostics combined with changes in the way healthcare is delivered, facilitated by better diagnostics and necessary to harness their value.

References
Introduction

P. aeruginosa (P. aeruginosa) is a major cause of nosocomial infections, particularly bloodstream and respiratory infections, with a high mortality rate of up to 30%. It has intrinsic resistance to many antimicrobials and can quickly develop resistance to most available antibiotics. With the spread of highly resistant strains, the risk of inappropriate empiric treatment is increasing, and has been correlated with increased mortality, especially in severe infections like sepsis. Difficult to treat (DTR) *P. aeruginosa* is a recent definition that indicates resistance to piperacillin-tazobactam, cefazidine, cefepime, aztreonam, meropenem, imipenem-cilastatin and quinolones, and is used in most current guidelines.

Empirical Antimicrobial Treatment (EAT)

EAT in severe sepsis should be chosen according to the patient’s allergies, comorbidities, primary site of infection, prior antibiotic exposure, and most importantly, local susceptibility patterns.

Combination therapy for *P. aeruginosa* sepsis may decrease the risk of inadequate EAT by combining mechanisms of action. However, the evidence regarding the efficacy of combination EAT is conflicting. While one Cochrane review comparing beta lactam monotherapy and combination with an aminoglycoside (AG) showed similar mortality for patients with *P. aeruginosa* sepsis, another recent meta-analysis evaluating all-cause mortality showed improved survival with combination EAT.

Given the rise of antimicrobial resistance (AMR), combination EAT should be highly considered in cases of severe sepsis to avoid inappropriate EAT. Two different mechanisms of action should be combined, typically a backbone beta-lactam and a fluoroquinolone (FQ) or preferably, an AG. Prompt de-escalation to monotherapy with a narrower spectrum is highly advised once susceptibility results are available and source control is achieved.

Targeted therapy for *P. aeruginosa* sepsis

P. aeruginosa sensitive to first line agents

First-line beta-lactam agents for *P. aeruginosa* coverage include beta-lactam / beta-lactamase-inhibitor combinations (BL/BLI) (piperacillin-tazobactam and ticarcillin-clavulanate), antipseudomonal cephalosporins (ceftazidine, cefepime and cefoperazone) and antipseudomonal carbapenems (doripenem, meropenem, imipenem). If possible, cephalosporins should be favoured over carbapenems for their higher potency, narrower spectrum, and lower tendency to induce resistance.

Antipseudomonal AG (gentamicin, tobramycin, amikacin) should only be used in combination therapy except for urinary tract infections (UTIs). Levofloxacin and ciprofloxacin are currently the only available oral treatment options for *P. aeruginosa* and should be spared for oral transitioning. Emergence of resistance is possible and should be highly suspected in patients who worsen despite appropriate therapy.

P. aeruginosa resistant to first line therapy

P. aeruginosa may acquire resistance to carbapenems through various mechanisms such as production of a carbapenemase, outer membrane protein modification or efflux pumps (Table). The potential of co-resistance to multiple first-line agents, especially, between ceftazidine, piperacillin-tazobactam and meropenem is high. In those cases, escalation to second-line agents will likely improve outcomes. Second-line agents include novel BL-BLI like ceftolozane-tazobactam (C/T), ceftazidine / avibactam (CAZ/AVI) and imipenem-cilastatin/relebactam (IMI/REL) or the siderophore cephalosporin, cefiderocol.
with DTR \textit{P. aeruginosa}. However, resistance to them has started emerging11. The European Society of Clinical Microbiology and Infectious Diseases (ESCMID) suggest treatment with C/T as the single first choice for severe DTR pseudomonal infections like severe sepsis12. IDSA recommends treatment with either C/T, CAZ/AVI, or imipenem/relebactam for DTR \textit{P. aeruginosa} infections outside the urinary tract4. Although C/T is favoured over CAZ/AVI for \textit{P. aeruginosa}, susceptibility to both agents should be obtained as there are C/T-resistant CAZ/AVI-susceptible strains13. Real world evidence has confirmed the efficacy of both14.

Cefiderocol is recommended as an alternative to novel BL/BLI by IDSA. Although there is concern about higher mortality due to the CREDIBLE-CR trial’s results, the number of patients with \textit{P. aeruginosa} in that trial was small, hence, these findings may not be generalisable15. Cefiderocol remains an option, especially given its activity against metallo-beta-lactamases (MBL).

The emergence of MBL-producing \textit{P. aeruginosa} is of significant concern. Aztreonam may resist hydrolysis by MBLS making it an attractive agent in combination with CAZ/AVI16.

Although many guidelines recommend against the use of polymyxins they might be the only option for the treatment of DTR strains in low resource settings. Although intravenous Fosfomycin may be active against DTR \textit{P. aeruginosa}, monotherapy is only indicated for cases of uncomplicated UTIs due to the risk of emergence of resistance16.

A single agent, preferably a beta-lactam, should be chosen for DTR isolates since definitive combination therapy has not been shown to improve outcomes and may increase costs and adverse events15.

\textbf{Important key elements of therapy}

The pharmacokinetics of most antimicrobials are altered following the hemodynamic changes of severe sepsis. Critically ill patients may require dose adjustments. For C/T, higher doses (3g every 8 hours) are recommended in critically ill patients to maintain bactericidal serum concentration17.

Extended infusion (EI) of beta lactams may help achieve a more sustainable serum concentration and decrease the length of stay18. It is also recommended by IDSA and ESCMID for the treatment of non-susceptible strains4.

The duration of treatment should consider the primary site of infection, the patient’s underlying comorbidities, source control, susceptibility results, inflammatory biomarkers, and clinical response. Two to three weeks is currently recommended especially for immunocompromised patients and patients with pneumonia who are at risk of recurrence with shorter regimens19.

\textbf{Conclusion}

The burden of \textit{P. aeruginosa} severe sepsis is worsened by resistant strains. Novel treatment options have improved patients’ outcomes and spared the adverse events of older toxic drugs like polymyxins. Combination empiric therapy should be initiated in critically ill patients to avoid inappropriate antimicrobial therapy and prompt de-escalation when susceptibility results are available.

\textbf{References}

5. Fiore M \textit{et al.} Ceftolozane-Tazobactam Combination Therapy Compared to Ceftolozane-Tazobactam Monotherapy for the Treatment of Severe Infections: A Systematic Review and Meta-Analysis. \textit{Antibiotics (Basel).} 2021;10:79
Funded by the European Union, HAPPY PATIENT (The Health Alliance for Prudent Prescription and Yield of Antibiotics from a Patient-Centred Perspective) is led by the Catalan Health Institute (ICS) and the IDIAPJGol Research Institute, and it seeks to reduce unnecessary prescription of antibiotics by 40% in five European countries.

To achieve this goal, a total of 406 participants have been participating in several intervention meetings of the HAPPY PATIENT European project on how to use antibiotics more appropriately and how to improve communication skills. These intervention meetings started in September with a specific “train the trainees” course led by Sara-Anna Davies, María Rodríguez Barragán, Nieves Barragán and Lucías Arias as members of the Spanish Society of Family and Community Medicine (semFYC) and its Working Group Programme on Communication and Health.

Participants of the HAPPY PATIENT training sessions had the opportunity to discuss the results of the first audit. All participants will be able to use the tools experts have developed. Experts from five European countries (Spain, Greece, France, Poland and Lithuania) have participated in a DELPHI study to establish a set of communication tools to achieve the prudent use of antibiotics. The idea is to keep health professionals and patients informed and improve communication. The materials are limited to the work of the HAPPY PATIENT European project, are available in different languages and provide reliable, helpful and contrasted information on antimicrobial resistance (AMR) and prescriptions.

The HAPPY PATIENT project aims to reduce the unnecessary prescription of antibiotics in five countries of the European Union which have worrying consumption levels. To achieve this, the consortium is developing various interventions with health professionals with multiple levels of care in the continent where these drugs are prescribed (Primary Care, Primary Care Emergency Services, Nursing Homes and Community Pharmacies).

In this first phase of the project, Lithuania and Spain have contributed the most participants - 105 and 109 respectively. Poland has contributed 80 participants, France has contributed 58 and Greece has contributed 54.

By medical specialties, family doctors or general practitioners have so far contributed 146 participants (almost 40% of the total), community pharmacies have contributed approximately 30% of participants, and, the other levels of care contributing participants have been the emergency services of the first level of care and nursing homes (30%).

The first audit of the HAPPY PATIENT project took place between February and May 2022. Previously, a qualitative study was carried out (September 2021 - February 2022) to develop communication tools. To optimise the results and achieve the objectives, the HAPPY PATIENT consortium used an adaptation of the DELPHI methodology, where a panel of experts prioritised predefined misconceptions regarding the use of antimicrobials. This methodology, which includes feedback and dialogue between the different experts, resulted in the messages to be used in the communication tools developed in HAPPY PATIENT.

The data that HAPPY PATIENT is collecting has already revealed a major part of the challenges European health professionals face when prescribing antibiotics. Therefore, these communication tools try to resolve doubts based on the evidence collected so far. Based on these differences and peculiarities, the University of Copenhagen and the semFYC, together with the rest of the consortium, have been responsible for formatting the communication materials presented to coincide with the European Day for the Prudent Use of Antibiotics (November 2022).

The six HAPPY PATIENT communication materials address the doubts and problems that may exist at different levels of care, from Primary Care to Nursing homes through to Pharmacies, and offer handy knowledge guides specially designed for use by professionals who carry out their activity in each one of these areas.

Keynotes of ongoing activity

- By the end of 2022, interventions were made in three countries. In January 2023, the remaining two interventions were completed.
- Interventions covering the results of the first audit in the four settings in five different countries with feedback and discussion of these results and an intervention in a course-workshop to improve communication taught by two professionals trained by the semFYC Communication and Health Group (training course for trainers carried out during the month of September 2022).
- Preparation of e-learning material with clinical cases, questions and communication videos uploaded on the Moodle E-learning platform.
- Preparation of specific publications based on the results of the first audit.
- Results of antibiotic inappropriateness for each setting in the different countries.
- Preparation of the second audit will start in February 2023.
The ISAC Early Career Working Group: providing support to the next generation of researchers

Jinxin Zhao, Yu-Wei Lin, Nusaibah Abdul Rahim, Iris Minichmayr
The ISAC Early Career Working Group Officers

There has never been a more critical time than now for the next generation of researchers, clinicians and clinical pharmacists in the field of antimicrobial chemotherapy, in the early stages of their careers, to keep up with novel techniques and to ensure a timely response in meeting current global health threats. Infectious diseases, as a discipline, is facing pressing challenges due to current global health and biodiversity threats and, in turn, requires next-generation scientists to be fully engaged in continuous advanced training during the early stages of their careers. With the support of the International Society of Antimicrobial Chemotherapy (ISAC) Executive Committee, we have established this international collaboration amongst early-career researchers that will help to address the challenges in antimicrobial research and serve as a platform for communication between early-career and senior scientists. Aligning with aims of ISAC, the ISAC Early Career (EC) Working Group aims to promote continuous education for young scientists and the general public to advance training in the science of antimicrobial infections. Importantly, we intend to provide opportunities for young experts worldwide to build long-lasting networks for collaboration.

Since its establishment, the ISAC EC Working Group has been actively involved in ISAC’s programmes. As of 2022, its members were from 18 countries, reflecting the global importance of ISAC and the ISAC EC Working Group for facilitating outreach, networking, collaboration and advanced training for the next generation of scientists working in infectious diseases.

In 2022, the ISAC EC Working Group successfully held a workshop for early-career scientists at the 32nd International Congress of Antimicrobial Chemotherapy (ICC). It included scientific presentations by ISAC / ICC Travel Grant awardees as well as a panel discussion by Professor Robin Patel. Following this event, the EC Working Group assisted in the early-career researchers session at the 1st International Conference on Antimicrobial Computational Pharmacology (ICAComP). Some of the EC Working Group’s leadership team (Drs Nusaibah Abdul Rahim and Yu-Wei Lin) shared their experiences with other attendees.

In addition, the group is organising a monthly webinar series that will focus on ‘When pharmacoetrics and systems pharmacology meet infectious diseases’ to provide members and attendees with cutting-edge techniques and their applications in the field of infectious diseases. Visit the ISAC YouTube Channel to watch the three webinars already organised by the EC Working Group.

The ISAC EC Working Group is also planning other programmes and activities, which will be implemented very soon. Once of its exciting programmes aims to foster the next global generation of scientists by establishing academic and clinical collectives that will bring together researchers, clinical pharmacists and clinicians to form the ISAC International Young Ambassadors Programme.

ISAC Young Ambassadors should become a member of an affiliated society of ISAC in their country, although the aims of these may vary depending on the needs of each location and community. In this programme will have the opportunity to develop essential skills outside the training curriculum: including teamwork, scientific writing, improvement of communication skills, participating in and organising meetings, and expanding personal and professional networks. If you are interested in becoming an ISAC Young Ambassador of your country, please email your CV and a letter of support to earlycareer@isac.world.

The ISAC Early Career Working Group represents the interests of young ISAC members in the field of infectious diseases.

The ISAC EC Working Group will also work with ISAC committee members to feature in journals and newsletters relevant to ISAC and have a presence on the website to share information on activities and opportunities. This will ensure that early-career researchers are able to engage with ISAC itself, are supported as they continue their journey with the society and can become involved with its other committees.

Building on ISAC’s notable successes in promoting education and research, together, we aim to advance the education and training of the next generation of professionals in the field of infectious diseases. Through the ISAC partnership, we hope to contribute to advancing both the quality and quantity of education, which will be a substantial investment for the future of infectious disease research.

Throughout the year, you can stay connected with the ISAC EC Working Group via our social media platforms (Twitter / LinkedIn / Website) By signing up to our social platforms, you will be the first to hear about what is coming up, and you can also contribute with ideas and feedback. What are you waiting for? Get involved now!

The ISAC EC Working Group is always happy to welcome new members; both students and early-career scientists. If you are interested in joining the ISAC EC Working Group, please email your CV to and earlycareer@isac.world.
UN calls to reduce pollution to decrease AMR

A new report from the UN Environment Programme (Bracing for Superbugs: Strengthening environmental action in the One Health response to antimicrobial resistance [(AMR)]) highlights that AMR cannot be addressed separately from the triple planetary crisis of climate change, biodiversity loss, and pollution and waste. As well as presenting a comprehensive overview of scientific findings, it calls for priority action to address key pollution sources from poor sanitation, sewage; community and municipal wastes; healthcare delivery; pharmaceutical manufacturing; intensive crop, and terrestrial and aquatic animal production sectors.

Using a ‘One Health’ approach to AMR will not only help reduce the risk and burden of AMR on societies but will also help address the triple planetary crisis.

Antibiotics in food-producing animals to increase by 2030

Authors of a study in PLOS Global Public Health used statistical models and country reports of veterinary antimicrobial usage (AMU), regional totals of AMU from the World Organization for Animal Health (WOAH), and on-farm AMU surveys, to estimate global antimicrobial usage in food-producing animals between 2020 and 2030 in 229 countries.

Based on current trends, global AMU is predicted to increase by 8% from 99,502 tonnes in 2020 to 107,472 tonnes by 2030.

In 2020, China, Brazil, India, USA and Australia were the top five AMU consumers, accounting for 58% of global AMU. By continent, Asia had the highest consumption (59%), 56% of which was from China alone. Africa, Oceania and South America, despite lower absolute AMU, were predicted to have higher relative increases of AMU (25%, 16% and 14% respectively).

By class, Tetracyclines were the most used antimicrobial (33,305 tonnes) and use is predicted to increase by 9% by 2030. This varied by country. Of note, Pakistan exhibited the highest consumption of penicillin.

Prospective audit and feedback in COVID-19 patients

Researchers of a Lancet Microbe study assessed the efficacy of prospective audit and feedback within an antimicrobial stewardship programme (ASP) for adults hospitalised in Edmonton, Canada, for the treatment of COVID-19 pneumonia. Patients were randomly assigned to the prospective audit and feedback plus standard of care group or the standard of care alone group.

301 audit and feedback events were recorded in the intervention group and 215 recommendations were made, of which 84% were accepted. Recommendations included discontinuing antibiotics when no bacterial infection was suspected or confirmed, or shortening the duration of therapy in alignment with guidelines.

Despite lower antibiotic use in the intervention group than in the control group (364.9 vs 384.2 days per 1,000 patient days), there was no impact on the clinical condition of patients which shows that prospective audit and feedback is safe and effective in optimising and reducing antibiotic use in adults admitted to hospital with COVID-19.

AMR high in patients with COVID-19 and bacterial infections

Authors of a study in the Lancet Microbe performed a systematic review and meta-analysis of bacterial co-infections (identified within ≤48 h of presentation) and secondary infections (>48 h after presentation) in outpatients or hospitalised patients with COVID-19. Authors included 148 studies (362,976 patients) from over 40 countries. The prevalence of bacterial co-infection was low at 5.3%, whereas the prevalence of secondary bacterial infection was higher at 18.4%. Patients in ICUs were at higher risk of bacterial infection than general hospitalised populations (38.9% vs 8.4%).

42 of the studies included comprehensive data for the prevalence of antimicrobial resistance (AMR) amongst bacterial infections. Amongst people with bacterial infections, the proportion of infections that were resistant to antimicrobials was 60.8% and the proportion of isolates that were resistant was 37.5%. Compared with the Americas region, the odds of antibiotic-resistant isolates were higher in studies done in the Eastern Mediterranean, South-East Asia and Western Pacific regions. Increased AMR was associated with a low-income or middle-income setting, being in an intensive care unit, interleukin-6 inhibitor use and diabetes.

Assessment of AMR national action plans

Several countries have national action plans (NAPs) for guiding national strategy and action on antimicrobial resistance (AMR) but this is the first comprehensive analysis of the plans. Using a governance framework containing 18 domains and 54 indicators, the authors of a study in Lancet Infectious Diseases reviewed 114 NAPs, looking at three main areas: policy design, implementation tools, and, monitoring and evaluation.

Using a scale of 0 – 100 (worst to best), the mean antimicrobial AMR governance score was 51 with considerable variance between countries. Norway had the highest score (85) and the Federated States of Micronesia had the lowest (28). The highest scoring domain was participation (83) and the lowest scoring domains were accountability (30) and feedback mechanism (30).

Domains relating to policy design and implementation tools scored similarly (55/54), whereas monitoring and evaluation efforts were lower (38). This is an area which needs to be improved for continuous understanding of national and international progress. These data suggest that the international response might not correspond with the scale / severity of AMR.

New WHO antibiotic book on common infections

The WHO AWaRe (Access, Watch, Reserve) antibiotic book provides short, clinical guidance on the management of 30 of the most common infections (adults and children), including recommendations for empiric antibiotic treatment at the first clinical presentation and when a “no antibiotic” approach is appropriate. Guidance is also given on the dosage and the treatment duration.

The AWaRe book is intended for all health care workers who prescribe and disperse antibiotics in high-, middle- and low-income settings in both the primary health care and the facility / hospital setting. The information included in the book supports the recommendations for antibiotics listed on the WHO Model Lists of Essential Medicines and Essential Medicines Children and the WHO AWaRe classification of antibiotics.
Carriers of MDR bacteria at higher risk of infection

Authors of a systematic review in the *Lancet Infectious Diseases* aimed to determine if carriers of multidrug-resistant Gram-negative bacteria (MDR-GNB) or vancomycin-resistant enterococci (VRE) in the intestinal tract were at higher risk of developing infection during hospital admission.

The review covered data from 44 cohort studies from 14 countries from 1995 – 2022. Overall, 14,049 carriers were included in the meta-analysis: 5,015 VRE carriers and 9,034 MDR-GNB carriers.

The authors found the risk of infection with MDR-GNB is on average 14% within 30 days in hospitalised patients (19% for patients with carbapenem-resistant *Enterobacteriales* [CRE] and 8% for VRE). These differences are important for guiding infection control strategies, such as screening and adjustment of antibiotic treatment to colonisation status.

The risk is considered high when compared to “clean” post-surgery infections which only is 1–3% at 30 days and comparable with surgical site infections after contaminated or “dirty” surgical procedures (18–25%).

Antibiotics can increase risk of IBD in older adults

Frequent antibiotic use for gut infections increases the risk of developing inflammatory bowel disease (IBD) in adults aged ≥40 years according to a study in *Gut*.

Data on 6,104,245 Danish citizens who had not been diagnosed with IBD aged ≥10 years from 2000 – 2018 were included. During this period, 36,017 new cases of ulcerative colitis (UC) and 16,881 new cases of Crohn’s disease (CD) were diagnosed. Of the individuals included, 90.9% received at least one course of antibiotics. Authors studied the timing, dose and class of antibiotics to determine if these impacted IBD development.

Antibiotic use was associated with an increased risk of IBD as compared with no antibiotic use for all age groups, although the greatest association was in those aged over 40. Those aged 10-40 were 28% more likely to be diagnosed with IBD versus 48% of 40-60 year olds. This risk was highest in the years immediately following antibiotic use (1 – 2 years), persisted across antibiotic classes affecting the gastrointestinal microbiome and was associated with the development of both UC and CD.

GLASS report shows increase in BSIs

The fifth WHO Global Antimicrobial Resistance and Use Surveillance System (GLASS) report summarises 2020 data on antimicrobial resistance (AMR) rates in common bacteria from countries, territories and areas. This version of the report brings new features, including analyses of population testing coverage or AMR trends. For the first time, the report presents 2020 data on AMC at the national level. A new interactive dashboard allows users to explore AMR and AMC global data, country profiles and download the data.

Of note, although most resistance trends have remained stable over the past four years, bloodstream infections due to resistant *Escherichia coli* and *Salmonella* spp. and resistant gonorrhoea infections increased by at least 15% compared to rates in 2017. More research is needed to identify the reasons behind the observed AMR increase.

Scale to assess AMR awareness

Authors of an article in *Journal of Antimicrobial Chemotherapy* used a 23-item antibiotic resistance (ABR) scale to assess ABR awareness amongst human healthcare practitioners (HHCP) and animal healthcare practitioners (AHCP) licensed to prescribe and dispense antibiotics in Ghana, Nigeria, Tanzania, Vietnam, Thailand and Peru. The scale, a self-administered questionnaires, comprised four modules: demographics, ABR awareness, practice items and context items.

Overall, 941 HCPs (625 human and 316 animal) were included. The ABR awareness scale had high-reliability coefficients (0.88 for human and 0.90 for animal HCPs) but performed better within countries than across countries.

Using a scale of 0-100, median ABR awareness scores were 54.6–63.5 for human HCPs and 55.2–63.8 for animal HCPs. Physicians and veterinarians scored higher than other HCPs in every country tested. Around two-thirds of respondents felt the information received on ABR was not adequate to inform their day-to-day practice. More than 95% of HCPs were interested in receiving information or training on ABR and antimicrobial stewardship.

Using the scale alongside context questions and objective measurement of practices is recommended to inform interventions to improve antibiotic use.

Appropriate antibiotics for BSIs lowers mortality risk

A study published in *JAMA Open Network* found appropriate antimicrobial therapy is associated with lower in-hospital mortality in patients with bloodstream infections (BSIs).

The analysis included 32,100 adult patients with BSIs from 183 US hospitals who received at least one new antimicrobial within two days after blood samples were collected during hospitalisation. Patients were divided into three infection groups: gram-negative rods (GNRs [46.6%]), gram-positive cocci (GPC [52.5%]) or *Candida* species (0.9%). Patients were further divided into those who did, and those who did not receive appropriate initial antimicrobial therapy. Appropriate antibiotic therapy use was 94.4% for GNRs, 97.0% for GPC and 65.1% for *Candida* species. The most common pathogens were *Escherichia coli* (58.4%) and *Staphylococcus aureus* (31.8%).

In-hospital mortality rates for the appropriate antimicrobial group versus the inappropriate empirical therapy group were 12.8% vs 20.7% for GNR, 14.8% vs 21.1% for GPC and 23.7% vs 34.3% for *Candida* species.

Global study on AMS programmes

A study in *JAMA Open Network* found a positive association between antimicrobial stewardship programmes (ASP) and antibiotic use globally in both hospital and nonhospital settings.

Authors analysed 52 studies (40 conducted in high income countries and 12 in low- and middle income countries) comprising 1,794,889 participants to determine the link between ASPs and antimicrobial consumption.

ASPs were associated with a 10% reduction in antibiotic prescriptions and a 28% reduction in antibiotic consumption. For settings, the largest reduction in antibiotic consumption associated with ASPs, was in paediatric hospitals at 21%. A 28% reduction was observed in World Health Organization watch groups antibiotics with high resistance potential.

The impact assessment of ASPs in resource-limited settings, where antibiotic use is high, remains scarce.
We are delighted to announce Professor Geoff Coombs as the new President of ISAC. Prof. Coombs is the Chair of Public Health at the School of Veterinary and Life Sciences, Murdoch University and the Senior Clinical Scientist for PathWest Laboratory Medicine, Western Australia, Fiona Stanley Hospital. He has served on ISAC’s Executive Committee since 2013. Prof. Coombs will build upon the success of previous ISAC President, Prof. Andreas Voss, in helping ISAC achieve its aims of increasing knowledge of antimicrobial chemotherapy and tackling antibiotic resistance around the world.

We would like to thank Prof. Voss for his strong leadership and wisdom over the last three years throughout the pandemic, which were some of ISAC’s most challenging and productive years.

We welcome Souha Kanj to the Board of Directors as ISAC President-Elect and Heiman Wertheim as ISAC Treasurer. We are also pleased to welcome four new members to the ISAC Executive Committee: Fatma Amer (Egypt), Dale Fisher (Singapore), David Jenkins (UK) and Patricia Muñoz (Spain).

The new ISAC Executive Committee looks as follows:

2023 marks a crucial editorial transition for the International Journal of Antimicrobial Agents (IJAA). At the end of 2022, Jean-Marc Rolain stepped down as Editor-in-Chief after eight years in this position. He has been succeeded by Jian Li, who officially took over on 1st January 2023.

Jean-Marc was appointed as Editor-in-Chief of IJAA in 2015 and guided the journal through a remarkable transformation. His work and dedication to the journal contributed to building firm foundations for its future. We now have the privilege of welcoming Jian Li, who is committed to continuing the journal’s aims to maintain high standards of academic quality and integrity.

Jean-Marc and Jian have worked together on a detailed handover plan since October 2022 to ensure continuity for the journal.

ISAC and Elsevier sincerely thank Jean-Marc for his dedication and service and to each of you for your continuous efforts and support for IJAA and its community. We would also like to take this opportunity to thank Dr Sophie Baron for her excellent work as Editorial Assistant to Jean-Marc and we welcome Dr Sue Nang who will provide editorial support to Jian going forward.
ISAC / APUA antibiotic cards

The Alliance for the Prudent Use of Antibiotics (APUA) is proud to announce the availability of ‘Antibiotic cards’ for some of the main antibiotics currently in use with further cards to follow. This project, initiated by Mushira Enani, aims to provide a summary of the main characteristics of selected antibiotics. These antibiotic cards have been primarily designed to assist prescribers in the selection of the most appropriate antibiotic, with optimal dosages, and to provide guidance to those who take care of patients who receive antibiotics.

These antibiotic cards have been produced by members of the APUA board and are freely available through our website. They share a common design, focusing on their antimicrobial spectrum, main indications dosing, and adverse events. We hope that you will find them useful and that these antibiotic cards will contribute to better use of antibiotics worldwide, the primary goal of APUA. Click here to download the cards or click the individual images below.

ISAC Project Grants

ISAC is now accepting Project Grant applications to fund antimicrobial research in low- to middle-income countries (LMICs) from ISAC Member Society applicants. Applications are invited for grants between £10,000 and £20,000. Apply here.

Aim of Research Project

Applicants are required to demonstrate that ISAC funds will be utilised for a clearly defined piece of research, which will have an identifiable outcome on completion of the work. At least one country involved must be an LMIC country.

Research projects should address one of the three following areas:
1. What are feasible & effective prevention strategies to prevent transmission of (resistant) pathogens in low resource settings?
2. What basic laboratory support does a healthcare system minimally need to tackle infectious diseases?
3. How do we improve antimicrobial use worldwide to ensure it is delivered only to those who need it?

Deadline to apply: 1 September 2023

Recent awardees

In the previous call for applications, four excellent projects were chosen to be awarded grants:

- Carriage of antimicrobial resistance in Fiji associated with recent exposure to international healthcare (CARE-Fiji)
 Anton Peleg and Tracey Young-Sharma
 The Alfred Hospital and Monash University, Australia / Colonial War Memorial Hospital, Fiji

- Improving the management of lower respiratory tract infections in children in Sri Lanka
 Phoebe Williams and Gayana Subasinghe
 Sydney Children’s Hospital, Australia / University of Kelaniya, Sri Lanka

- Impact of rapid diagnostic testing for chlamydia and gonorrhea in Kumi, Uganda
 Erik Schaftenaar and Alex Abal
 St. Antonius Hospital, the Netherlands / Kumi Hospital, Uganda

- Evolution on lung-chip drives dose optimisation of antibiotic combination therapies: a systems and computational approach
 Jinxin Zhao and Nusaibah Abdul Rahim
 Monash University, Australia / University of Malaya, Malaysia
ISAC Webinars

ISAC hosts free, educational webinars as part of the ISAC Academy on a variety of infectious disease-related topics in collaboration with its Working Groups and Member Societies. Watch ISAC’s webinars on the ISAC YouTube Channel.

Future Webinars

The benefits of routine-based sequencing of pathogens

Tuesday 16 May 2023

12.00 - 13.30 (GMT) / 13.00 - 14.30 (CET)

- Dr Erik Bathoorn, Netherlands
 NGS-based surveillance of VRE-carriage may prevent infections
- Dr Mariette Lokate, Netherlands
 Early detection of contaminated medical instruments by NGS-based surveillance of HMEs
- Prof. Matt Holden, United Kingdom
 The implementation of WGS of SARS-CoV-2 to inform the COVID-19 public health response in Scotland
- Prof. Andreas Voss, Netherlands
 ISAC Past President
 MODERATOR

Viral Respiratory Tract Infections (RTIs): superinfections

Tuesday 13 June 2023

11.00 - 12.30 (GMT) / 12.00 - 13.30 (CET)

Organised by Alliance for the Prudent Use of Antibiotics (APUA)

- Prof. Nina van Sergeant, Netherlands
 Group A streptococcal infection
- Prof. Anuradha Chowdhary, India
 Fungal infections (in the ICU)
- Prof. Alex Soriano, Spain
 Gram-negative super-infections
- Prof. Souha Kanj, Lebanon
 ISAC President-Elect
 MODERATOR

Free E-modules

ISAC offers free E-modules as part of the ISAC Academy series of short courses on infection topics. Participants receive a certificate of attendance.

Fever in returning travellers

This module was developed by ISAC’s Immunisations & Vaccines Working Group, led by Dr David McIntosh, Prof. Robert Steffen and Prof. Blaise Genton.

The course is aimed at healthcare professionals interested in learning more about managing fever in returning travellers. It contains case studies as well as methods of infection prevention including vaccination, vector control and chemoprophylaxis. Users will receive a certification upon completion. Access the module here.

Respiratory tract infections and antimicrobial resistance

This module explores the causes of Respiratory Tract Infections (RTIs), the epidemiological effect of the SARS CoV-2 pandemic on RTIs and antimicrobial prescribing. It also explores antimicrobial resistance (AMR) and diagnostics and the role of vaccines in reducing antimicrobial resistance. Access the module here.

ICC Abstracts

The Abstracts from the 32nd ICC have been published in ISAC’s journal, the *Journal of Global Antimicrobial Resistance (JGAR)*. All abstracts are open access and freely available. Congratulations to all colleagues on their published abstracts. Read all the abstracts here.

On-demand recordings

ISAC is pleased to share the recordings of the plenary and keynote sessions presented at the 32nd International Congress of Antimicrobial Chemotherapy (ICC) in Perth, Australia by top speakers in the field of infectious diseases and antimicrobial chemotherapy. View ISAC’s YouTube Channel (@ISACAPUA) to watch the presentations.
ISAC CEO awarded Leader of the Year

ISAC’s Chief Executive Officer, Fiona MacKenzie, was recently announced as recipient of the prestigious national award “National Health Service (NHS) Scotland Leader of the Year”. Fiona has fulfilled the unique role of national lead for SARS CoV-2 diagnostic testing across all National Health Service (NHS) Microbiology / Virology laboratories in the 15 regions of Scotland throughout the pandemic. She demonstrated exceptional leadership in coordinating the rapid rollout and sustained provision of COVID-19 testing across NHS Scotland and also sat on most of the National COVID-19 operational, strategic and policy groups. She served as the linchpin providing linkage between the NHS, Scottish Government, Health Protection Scotland, NHS National Procurement and a large number of commercial companies. Stakeholders and colleagues alike respect, trust and admire Fiona and nominated her for this accolade, stating that “without her, NHS Scotland’s diagnostic response to the pandemic would not have been the success that it has been”.

In memoriam

It is with great sadness that we shared news of the passing of Professor Vladimir Krcmery on 20 December at the age of 62. He was an eminent and highly respected colleague and a person of many passions, skills and talent. Above all else, he was a beloved husband, father, son, brother and grandfather. His family wrote “that he completed his earthly journey” and announced his passing “with great sorrow, but also with much joy over his life’s work and over his legacy of strong personal faith and dedication to serving the poor, believing that today he is watching over us from the Kingdom of Heaven”. The family announcement quoted Matthew 25; 34 – 36; “Then the King will say to those on his right hand, ‘Come, you whom my Father has blessed, take as your heritage the kingdom prepared for you since the foundation of the world. For I was hungry and you gave me food, I was thirsty and you gave me drink, I was a stranger and you made me welcome.’ “

The scale and grandeur of Vladimir’s funeral service reflected the enormous esteem and affection in which he was held and would have surprised such a humble and gentle man. During the service, it was said that his scientific and humanitarian activities were guided by his Christian values and it was clear that he was a bright, shining national treasure with a tribute recorded from Slovakia’s Prime Minister. Vladimir’s international colleagues knew him best as a leading global expert on tropical and infectious diseases, and as a skilled administrator at universities in his home country of Slovakia where he supported many trainees and students. Indeed, he founded the St. Elizabeth University of Health and Social Work in Bratislava.

His most lasting legacies will perhaps be related to the humanitarian work he initiated and actively participated in countries and cultures around the world, including establishment of medical facilities across the developing world, including in Kenya, Cambodia and Haiti. Vladimir displayed incredible humility, generosity and humour and was always a pleasure to know and socialise with. Vladimir was a valued member of the ISAC Executive Committee from 2015 – 2019, a leader of the ISAC Working Group on Infections in Catastrophic Areas until his death, and a friend who always had incredible inspirational stories to share at the numerous ISAC meetings he attended. He hosted a memorable ISAC Executive Committee meeting in Bratislava when some witnessed first-hand the depth of compassion he had for those less fortunate; he was greeted with huge affection and reverence by some of the homeless men of the city who he personally helped to feed and clothe.

Vladimir was an extraordinary person with a kind heart who leaves behind a huge legacy and will be greatly missed by all who knew him. ISAC members send their deepest condolences to his family, friends and colleagues.
About ISAC
ISAC was founded as a non-profit organisation in 1961 and, in response to the dynamic nature of the subject matter, has focused most recently on antimicrobial stewardship and antimicrobial resistance.

ISAC is a federation of affiliated Member Societies which aims to increase the knowledge of antimicrobial chemotherapy and combat antibiotic resistance around the world.

ISAC currently has a worldwide membership of 95 national and regional societies, which in turn have over 60,000 individual members. Visit www.ISAC.world to see how your society can become an ISAC Member Society.

ISAC has 22 Working Groups on specialist subjects which are engaged in advancing scientific knowledge in antimicrobial chemotherapy, clinical microbiology and infectious diseases through various activities. To join an ISAC Working Group, please email Fee Johnstone, ISAC Executive Assistant (secretariat@ISAC.world) with a brief C.V.

ISAC has two society journals:
- International Journal of Antimicrobial Agents (IJAA) (impact factor: 15.441)
- Journal of Global Antimicrobial Resistance (JGAR) - gold open access (impact factor: 4.349)

ISAC’s scientific congress, International Congress of Antimicrobial Chemotherapy (ICC), is held every two years and it is now in its 32nd year.

For more information on ISAC, visit www.ISAC.world or scan the QR code.

About APUA
Founded in 1981 by Prof. Stuart B. Levy as a global non-profit organisation, APUA’s mission is to maximise the effectiveness of antimicrobial treatment by promoting appropriate antimicrobial use and containing drug resistance. It was the first organisation to address antibiotic preservation and continues to provide a strong voice in the field despite the subsequent emergence of many other organisations and groups addressing a topic which has become a specialty in its own right; that of “antibiotic stewardship”.

Prof. Levy’s retirement was announced towards the end of 2018. This was an opportunity for the APUA Board to review its leadership and governance and it took the opportunity to seek a partner organisation with which to synergise. This led to the merger of APUA with the International Society of Antimicrobial Chemotherapy (ISAC), effective from February 2019.

The new international APUA Board meets regularly and aims to build on the work achieved by Prof. Levy and his excellent team of associates.

Visit www.APUA.org for more information or scan the QR code.

Disclaimer
ISAC / APUA accept no legal responsibility for the content of any submitted articles, nor for the violation of any copyright laws by any person contributing to this newsletter. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by ISAC / APUA in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.

The opinions expressed within the content are solely those of the authors and do not reflect the opinions and beliefs of ISAC or APUA.

The APUA Newsletter (ISSN 1524-1424) © 2023 ISAC / APUA
Since 1983, the APUA Newsletter has been a continuous source of non-commercial information disseminated without charge to healthcare practitioners, researchers, and policy-makers worldwide. The Newsletter carries up-to-date scientific and clinical information on prudent antibiotic use, antibiotic access and effectiveness, and management of antibiotic resistance. The publication is distributed in more than in more than 100 countries. The material provided by ISAC / APUA is designed for educational purposes only and should not be used or taken as medical advice. We encourage distribution with appropriate attribution to ISAC / APUA. See previous editions of the Newsletter on the APUA website.

*ISAC welcomes contributions. Please send us your article ideas. All content may be edited for style and length. Please email secretariat@ISAC.world

Newsletter Editorial Team: Fiona MacKenzie (Managing Editor) and Fee Johnstone (Editorial Assistant)